Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 311(Pt 2): 137029, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36323387

RESUMO

The wood industry is potentially advantageous to applying the concepts of circular economy for sustainable development and can contribute to the commitment of carbon neutrality. This study developed an integrated circular economy index based on five different quantitative indicators for assessment of the wood production chain: heat recovery rate, CO2 sequestration rate, fossil fuel substitution rate, renewable electricity usage rate, and revenue increase from the by-products. A combination of best-worst method (BWM) and linear goal programming (LGP) techniques was investigated to develop an optimal circular economy model of wood processing chain for reduction in CO2 emission. The integrated circular economy index and the combined method were tested in a case-study of a rubberwood processing chain in Vietnam. The proposed model suggests that the woodchips and biomass from the harvesting and processing of rubberwood could be collected and treated using microwave thermolysis techniques; the enzyme hydrolysis technique is appropriate for bioethanol and biomethane recovery from the sawdust; and the hot air technique is preferable in the drying process. The proposed model could result in a significant reduction of the total net carbon emission from +552,750 tons CO2eq to -1,145,940 tons CO2eq per year. This could support the achievement of Vietnam's zero CO2 emission goal and hopefully contribute to the country's commitment to carbon emission neutrality by the year 2050.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...